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S U M M A R Y  
Three dissipative finite-difference schemes are discussed tbr the numerical calculation of discontinuous shallow water 
flow. The shallow water equations have been derived on assumptions which are not acceptable in the case of disconti- 
nuous flow. However, they may give satisfactory results if only weak jumps are present. 

It will be shown that a coarse network may affect the velocity of propagation of the computed bore. 

!. Introduction 

The nonlinear shallow water equations derived by Stoker [1] are frequently used for continuous 
solutions to problems concerning shallow fluid flow. 

In this paper, we discuss three dissipative finite-difference schemes for approximating dis- 
continuous shallow fluid flow governed by tlhe shallow water equations. 

The schemes are tested for stability, numerical damping and phase shift. The Courant- 
Friedrichs-Lewy stability condition appears, though the schemes are dissipative if this condi- 
tion is slightly strengthened. 

In [-2] Leendertse had to deal with numerical damping as a falsification of the solutions of 
his calculations of long-period water waves. This damping is necessary if we are to obtain a 
stable solution in our calculations. 

As in [-2] the numerical phase shift influences the solution, but is minimized by a refinement 
of the superimposed grid. 

By a nonlinear combination of the shallow water equations, we obtain a second system of 
equations. The two systems are equivalent in the case of smooth solutions, but yield different 
solutions if a discontinuity occurs in the flow'. We shall arrive at a system which is physically 
acceptable for our computations. 

The results obtained from the jump conditions at the discontinuity in the flow are favourably 
compared with the numerical solutions. Results from laboratory experiments carried out by 
Cavaill6 [-3] give an indication of the usefulness of the shallow water equations as a computa- 
tional model for discontinuous shallow fluid flow. 

2, Preliminary Considerations 

We consider the initial-value problem for the class of equations of the form 

ut+fx = 0, 0< t<  T, and u(x, 0) = q~(x), (2.1) 

where u (x, t) is a p-component vector andf(u)is a known vector-valued function of u. 
Suppose that equation (2.1) can be transformed into 

u,+A(u)u~ = 0, (2.2) 

where A (u) denotes the Jacobian matrix o f f  with respect to u. Let the quasi-linear system (2.2) 
be hyperbolic, i.e., the matrix A has p real and different eigenvalues a~ for all values of the ar- 
gument u. 
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82 A. C. Vliegenthart 

We approximate the system (2.2) by means of explicit difference schemes of the form 

v(x, t + At)= SA.v(x, t) , (2.3) 

in which At represents the time increment and Snx a finite sum of translation operators with 
matrix coefficients, 

SA~ = ~ Cj T j . 
(J) 

The operator T denotes translations by amounts Ax = At/2 in the x-direction, 2 being constant 
independent of Ax and At, TJv(x, t) = v(x +jAx, t). 

Definition. The differential equations (2.2) are approximated with m-th order accuracy by means 
of the difference scheme (2.3) if for all sufficiently smooth, genuine solutions u (x, t) of(2.2), 

Ilu(x, t+ At)-SA~u(x,  t)ll = O(At m+~) as A t ~ O  

holds uniformly in t. 

The norm appearing in this definition denotes the L 2 n o r m .  We assume that the calculations 
will be performed from t = 0 to t = T. For this time range we require the difference scheme (2.3) 
to be stable, ignoring the influence of the boundary conditions. 

Definition. The difference scheme (2,3) is (Lax-Richtmyer) stable if for some a > O, a constant M 
exists such that 

IIS3~11 ~ M 

for all n, At satisfyin9 0< At< a, and O<=nAt<= T. 

In the nonlinear case we consider the first variation of the operator Sax, and then replacing 
the variable coefficients by their value at some given point, we obtain the "localized" operator. 
For stability of SAx in the nonlinear case we require the associated "localized" operator to be 
stable at every point. Suppose that u(x, 0) has period q in x, then the local amplification matrix 
G of S ~  will be defined by 

G(x, At, 4) = ~ Cje ijr , 
(J) 

where ~ = kAx; k is dual to x in the Fourier transform and ranges over the values 2nr/q, r being 
any integer. 

According to  Richtmyer and Morton [4] the aforementioned stability condition involves 
the uniform boundedness of the matrices G" and yields the von Neumann necessary condition 
for the eigenvalues 9v of G : 

]g~(x, A t , ~ ) l < l + O ( A t ) ,  O < A t < a ,  v = 1, 2 , . . . , p .  (2.4) 

In [4] the following is proved: 

Theorem. I f  the amplification matrix G has a complete set of linearly independent eigenvectors, 
then condition (2.4) is sufficient as well as necessary for stability if a constant z exists such that 
A >= r > O, where A 2 is the Gram determinant of the normalized eigenvectors. 

In the next sections we shall discuss dissipative difference schemes. 
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Definition. The difference scheme (2.3) is dissipative o f  order 2r, where r is a positive integer, i f  
there is a positive constant 3, such that 

Ig~(x ,  At, 4)[ < 1-at412r , v = 1, 2,  . . . ,  p 

for  all x and all ~ and A t satisfying 141 < ~ ,  and A t < a, where a is some positive constant number. 

3. Numerical Damping and Phase Shift 

The definition of the amplification matrix G in the preceding section presupposes a component 
a (k) e ikx of the Fourier series for u (x, 0). This component changes for the genuine solution u (x, t) 
of system (2.2) with constant matrix A into 

fi(k) e i(*x- m , (3.1) 

l / k =  a, , (3.2) 

where a, denotes an eigenvalue of A. 
Relation (3.2) can be found by inserting (3.1) into system (2.2). We assume that k and I are real. 
If the system (2.2) is replaced by the difference scheme (2.3), the frequency I is generally chang- 

ed into a different, and possibly complex frequency which we denote by l'. 
Consequently, we have in case of equation (2.3) for the amplitude and velocity of the Fourier 

component, respectively, 

fi(k)e 'm(r)t and Re( l ' ) /k .  

The concept of a complex propagation factor T has been introduced by Leendertse [-2], 
ei(kx- rt) 

T(x ,  At, 4) - ei(k~_U) �9 

We follow the propagation factor over a time interval in which the component with frequency 
I propagates over its wavelength. Then, for t = -2roll, 

T (x, At, 4) ~ exp [ 2zri{ (l'/l) - 1}].  (3.3) 

The modulus and argument of T represent measures for the numerical damping and phase 
shift respectively. 

Using (3.2) and (3.3), we may derive 

IT(x,  At, 4)1 = exp [2Mm(l')/(ka~)] (3.4) 
and 

arg [ T  (x, At, 4)] = 2n [Re (l')/(ka,) - 1].  (3.5) 

The velocity ratio Q will be given by Q =Re(l')/(ka~). (3.6) 

We substitute the component ~(k)e ~(k~- t'o into equation (2.3) with constant coefficients ; then 
it can be shown that 

[G(x, At, 4) - e-a,,,~,i] fi(k) = 0 ,  

where ! is the unit matrix, and G is the amplification matrix of the difference scheme again. 
Thus we find a relation for l': 

9~(x, At, 4) = e -/va' ; (3.7) 

here gv denotes an eigenvalue of G again. 
Remembering the definition of a dissipative difference scheme in section 2, it is clear from 

(3.7), that for such a scheme we have Im(l') < 0, for all ~ r 0. Hence dissipation goes together 
with damping of the Fourier components. 
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4. Finite-Difference Schemes 

We shall use the notations: 

n u ( j A x ,  nAt)  - uj = u" , 
n n 

D u  n = U j +  1 - -  U j _  1 , 

DlUn = n n /Aj+ 1 - - U j  

D2u n = u T - u T _ ,  , 

n n M u "  : (u j+ ,  + uj_ 1)/2, 
M 1 u n = (uT+ I q- u7)/2,  

v 2  u" = (u 7 + .7_  , ) /2 .  

Hereafter we shall denote also the numerical solution of (2.2) by u. The following three 
dissipative difference schemes for the system (2.2) will be discussed. 

Scheme A 

u" + 1 = M u " -  2 / 2 D f " ,  

Scheme  B 

u" +* = u" - 2 / 2 0 f "  + 22/2 [ (m 1 An)(D If  n) __ (M 2 An) (D2fn)], 

Scheme  C 

u" + * = M u " -  2~2D f "  

u,+2 = u , _ 2 D f , +  1 

Scheme A is a first-order-accurate difference scheme given by Lax [-5]. 
In [-6] Lax and Wendroff introduced scheme B. This scheme has second-order accuracy. 
Scheme C is the two-step Lax-Wendroffprocedure found by Richtmyer [7]. If the coefficients 

are constant, it changes over to scheme B, though with mesh spacings 2 A x  and 2At.  
The local amplification matrix G of scheme A, as derived in [8], is 

I cos ~ - i 2 A  sin 4, (4.1) 

in case of scheme B matrix G is 

I - i 2 A  sin ~-22AZ(1 - c o s  ~), (4.2) 

whilst in case of scheme C matrix G is 

I -  i2A sin 24 - jL2A 2 (1 - cos 24). (4.3) 

Denote 2a~ by # ; then it is clear that the eigenvalues # of the amplification matrices (4.1), 
(4.2) and (4.3) are, in the same order, 

cos {- ikt  sin ~ ,  

1- i /~  sin 4 - / ~ 2 ( 1 - c o s  4), 

1 - i# sin 2 4 -  p2(1 - cos 24). 

(4.4) 

(4.5) 

(4.6) 

The amplification matrices of the schemes above are all three polynomials in the matrix A, 
hence their eigenvectors are the same as those of A, constituting a complete set of linearly in- 
dependent eigenvectors, not depending on 2 and 4. Therefore, according to the theorem of 
section 2, the von Neumann condition is sufficient as well as necessary for stability. It is easily 
established that applying this condition to the eigenvalues (4.4), (4.5) and (4.6) yields for the 

three schemes the well-known necessary stability condition by Courant, Friedrichs and Lewy 
[9]: 

I/~l < 1. (4.7) 

From (4.4) we obtain for the eigenvalues Ov of matrix (4.1): 
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Ig~[ 2 =  1 - ( 1  _122)sin 2 4. (4.8) 

According to the definition in section 2 we conclude that scheme A is dissipative of second 
order, if ]121 < 1. 

From (4.5) we obtain in case of scheme B 

�9 [gv[ 2 = 1-4122(1 _122) s in  4 � 8 9 1 6 2  (4.9) 

whilst (4.6) yields for  scheme C 

[g~[ 2 = 1 - 4122 (1 - 122) sin 4 4. (4.10) 

Relations (4.9) and (4.10) show that the schemes B and C are dissipative of fourth order, 
provided that 1121 < 1. 

Relations (3.4) and (3.6) together with relation (3.7) and each of the expressions (4.4) through 
(4.6) can be combined into the following relations for 

scheme A 

IT[ = (cos 2 r + 12 2 sin 2 r162 (4.11) 

Q = arctan(12 tan r162 (4.12) 

scheme B 

I TI = [-1 - 4p2(1  - 122) s in  4 �89 ~]-/(u~) (4.13) 

Q = arctan 1 - ~ - s q n  2 �89 (#4), (4.14) 

scheme C 

I TI = [,1-4122(1 _122) sin 4 r162 (4.15) 

12 sin 24 
Q = arctan \1_2122 sin2 4)/(212r (4.16) 

The phase shift is related to the velocity ratio by 

arg(T) = 2re(Q- 1). (4.17) 

Figures 1 through 6 show sets of curves of relations (4.11) through (4.17) for different values 
of 12; the wavelength is denoted by L, i.e., L/Ax = 2rc/~. 

In section 3 it has been argued that dissipation goes together with damping of the Fourier 
components. One can see from Figures 1, 3 and 5 that especially the short-wavelength compo- 
nents are attenuated (see also [4]). 

Figures 2, 4 and 6 show clearly that the schemes A, B and C are dispersive. Again especially 
the short-wave components are affected. 

In section 6 we shall apply scheme B to the equations of the shallow water theory while 
providing at once a confirmation of the results above. 

5. Shallow Water Flow 

The following experiments have been carried out by Cavaill6 [-3]. 
A basin with a horizontal, rectangular and smooth bot tom is divided into two parts by a slide. 

The basin is filled with water; we denote the depths of the fluid on either side of the slide by ho 
and ha, with ho > hi. 

The slide is rapidly pulled up and after a short time interval a discontinuity in the elevation 
of the fluid (bore) is observed, propagating with side 1 as the front side. (Hereafter side 0 will be 
called the back of the bore). 

In the other direction a rarefaction wave propagates, resulting in a decreasing elevation. 
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Fig.1. Scheme A: Numerico[ damping as given by (/-.11). 
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TABLE 1 

89 

depths laboratory 

at t=O results system(5.4) 

h0 hz q q h2 

numerical results 

1 0.696 0.96 0.96 0.84 
1 0.348 0.93 0.91 0.63 
1 0.174 0.90 0.87 0.51 
1 0.043 0.98 0.84 0.39 

system (5.5) 

02 q h2 /32 

0.17 0.96 0.84 0.17 
0.41 0.94 0.63 0.42 
0.57 0.96 0.48 0.61 
0.75 1.07 0.29 0.92 

Dimensionless values of the velocity of propagation of the bore, denoted q, measured for 
different ratios of ha and hi, have been listed in Table 1. For dimensionless variables see below 
in this section. 

We shall compare the experimental results by Cavaill6 with solutions of the shallow water 
theory (see Stoker [ 1] ), determined by the equation of conservation of mass 

Oh&+~xO (hv) = 0 , (5.1) 

and the equation of motion in the x-direction 

Ov 8v Oh 
& + V~x + g~x = 0. (5.2) 

The space and time coordinates are denoted by x and t; h denotes the depth of the fluid, 
v the velocity in the (horizontal) x-direction and 9 the acceleration due to gravity. 

Multiplying equation (5.1) by v and (5.2) by h, and adding the equations together, yields 
the equation of conservation of momentum 

0 (hv) q- a (hv2) + 9h Oh o5 = 0 .  ( s .3)  

This equation can also be derived by integration of (5.2) with respect to the vertical space 
coordinate and making use of (5.1). 

By combining equations (5.1) and (5.2) we also get 

0 0 (h2v) = 0  OtO [�89 -+- ~x [�89 + g h 2 ) ]  + � 8 9  ~xx ' 

expressing the conservation of energy, i.e. the sum of kinetic and potential energy. 
We introduce dimensionless variables: 

= x/ho ~ = v/~r~o 

= t 9x/~o 0 = 9 / g  = 1 ; 
h = h/ho 

ha denotes again the depth on the upstream side before the slide is pulled up. 
Using the dimensionless variables and leaving out the bars, we may write the system which 

consists of the equations (5.1) and (5.2) in the notation (2.1) 

at + Ox \�89 2 + h) = 0 .  (5.4) 

Similarly equations (5.1) and (5.3) yield the system 

& + ~x cp2/h+�89 = 0 ; ~p is called the discharge, qg=hv. (5.5) 
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It will be clear that the systems (5.4) and (5.5) are equivalent in the case of a continuous solu- 
tion. Consequently, the eigenvalues of the matrix A are for both systems 

a , :  v (5.6) 

representing the speeds of progressive and retrogressive waves. 
In the case of continuous solutions one would prefer system (5.4) for calculations ; then, it 

follows from above that momentum and energy are conserved. 
We shall show that in the case of a discontinuous solution the two systems are not equivalent 

at all. 

6. Numerical  Results 

The calculations described below have been carried out with difference scheme B. 
Suppose the slide in the basin (see section 5) is pulled up at t = 0; thus, we take as initial con- 

ditions v - 0 ,  ho= 1, and, for example, hi =0.5. 
Figure 7 shows a computed bore extended over about three intervals Ax. In section 4 we 

lho Ilhl - ~ -  
Y 

(] 5 lb 
Rg.7. InRiol. depths ond bore computed by opp[ying schemeB to system 

(5.5); A X =0.2,~t= 0.04. 

~.6. 

~2- 

distonce 
covered 

,~ I /Ax  

i :2 :3 l. 5 6 7 8 w 1'0 
Fig. 8. Distonce covered by computed bore versus J/Ax;h==l ~ hi=0.5. 

system (5J~) 
. . . . .  system (5.5) 

described a falsification of the phases of the Fourier components for the numerical solution in 
the case of too large meshes Ax (see also Figure 4). Though a linear analysis is not appropriate 
here, it may be possible that a too coarse network imposed on the x, t-space, causes a retarda- 
tion of the computed bore. 

To show this numerically, we carried out the calculations with different values of Ax, whilst 
At is such that the ratio 2--At/Ax keeps the constant value 0.2 in order to satisfy the stability 
condition 

2(Iv[ + x/h)_- < 1, 

which is obtained from relations (4.7) and (5.6). 
The distance covered by the computed before versus 1lAx is shown in Figure 8 for the time 

intervals 0_< t_< 5 and 5_< t<_ 10. 
The x-value for which the depth of the fluid equals the average value of the depths on both 

sides of the bore will also represent the position of the bore; it is determined by linear interpola- 
tion. 

Figure 8 shows that the distance covered during the time interval 0-< t < 5 keeps increasing 
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for the considered values of Ax, whilst the distance covered during the time interval 5 < t < 10 
is approximately constant for Ax < 0.25. 

This can be explained by the following argument. 
At the instant t = 0 a genuine discontinuity is present. The computed bore presents itself not 

just as a discontinuity, however, but as a strong gradient of depth and velocity of the fluid (see 
also Figure 7). Thus, it may be expected that the Fourier series for the computed bore contains 
less short-wave components than the Fourier series for the discontinuity at t = 0, and from sec- 
tion 4 it is clear that the retardation of the bore occurs especially at the start of the computation. 

In the case of a stronger bore we obtained the same results : the graphs in Figure 9 show about 

601 distance 
" [ covered 

0~t~5 

I 
I 
I 

/,21 __ 5~t~Io 
O~t~5 

z.0 
~. 1/Ax 

Fig.9. Simil.or to f igure  8, except that  h I =0.02. 

the same feature as those in Figure 8, though in the case of system (5.5) the bore velocity is 
significantly larger than in the case of system (5.4). 

We compared our numerical results with the experimental results obtained by Cavaill6. 
To minimize the retardation described above, we used 

Ax = 0.1 and At = 0.02 for 0 <  t <  5,  and Ax = 0.2 and At = 0.04 for t > 5 .  

Values of the computed bore velocity q, together with values of depth and velocity of the fluid 
behind the bore, h2 and v2, have been listed in Table 1. 

In addition, analytic calculations were carried out using the generalized Rankine-Hugoniot 
relations (see the next section) applied to the systems (5.4) and (5.5). The results agreed well with 
the numerical results (see I-8]). 

7. A Local Instability 

In the case of system (5.5) and for hi =0.174 and hi =0.043 an instability was observed. This 
occurred at the position of the jump, and directly after t = 0. 

Figure 10 shows the depth h as a function of x for various numbers of time-steps. For  t > 0.8 
the depth becomes even negative locally, whilst the velocity increases more and more. 

= - ,  = 

depth h 

~ X  

Fig.10. System(5.5) ,  scheme B: A I.ocat instabi l i ty , ;  h~ h 1 =0.174j 
/X X = 0.25,At =1105 
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By using different mesh sizes, we may conclude that the instability is independent of the 
fineness of the net and also of the ratio 2 = At/Ax. This local and nonlinear instability has been 
found by Burstein [10] during numerical calculation of supersonic flow in three independent 
variables. Our argument, as does Burstein's, is based on a local and partial absence of numerical 
damping. 

For the eigenvalue v - v/h of the matrix A we have on the front side of the bore 

v-,A= 
The generalized Rankine-Hugoniot relation (see also Lax [11]) for equation (2,1) takes the 

form 

q[u] = I f ] ,  (7.1) 

where [ ] denotes the jump across the discontinuity, and q is again the velocity of propagation 
of the discontinuity. 

We apply relation (7.1) to system (5.4) and, taking into account that the velocity v on the front- 
side of the bore equals zero, it can be shown that behind the bore we have 

v2 = (h2- 1) hi q_h2, 

and thus also 
2 

v-'fh=(h2-hl) ~/hl +h2 
,f-h2 = 2h~-5hlh2+h~ 

N1 
where N 1 is definite-positive. 

The right member of this relation, and thereby the eigenvalue v -  ~/h is positive for h2/hl > 
4.56. (In fact also for hz/h 1 < 0.44, but this is not taken into consideration here). 

Similarly, applying relation (7.1) to system (5.5) yields with vl =0:  

v2=(h2-hl) ~1-- l+h2 
u 2hlh2 ' 

and behind the bore, 

v-,fh=(h2"hl) ~ u 2hlh2 
where N2 is definite-positive. 

,v/h2 = h~-h~h2-3hlh~+h~ 
N2 

Therefore, in this case, the eigenvalue v - x / ~  is positive for h2/h 1 > 3.21. It follows that for 
both systems (5.4) and (5.5), and for a strong jump, i.e., a large ratio h2/hl, the sign of one of the 
eigenvalues of the matrix A changes across the jump. We may expect that this eigenvalue will 
be zero somewhere in the region of the computed bore, and considering relation (4.9) leads to 
the conclusion that here the difference scheme is not dissipative : no damping of the short-wave 
components is performed by the eigenvalue v-x/~.  

Hence dissipation is absent just where it is necessary for a stable solution. The remedy to 
prevent the instability in our calculations is to give, as initial condition, the jump in h over two 
intervals Ax, instead of over one interval Ax (see Figure 11). 

] 
J 
lh, 

~ X  

i 
i 
I 
i 

]ho 
i 
I 
I 

Fig.11. In i t ia l  cond i t i ons  to  prevent  nonLinear ins tab i l i ty .  
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8. Conclusions 
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The equivalence of the systems (5.4) and (5.5) in the case of smooth solutions has been mentioned 
in section 5. From the results in section 6 it follows, however, that the discontinuous solutions 
of the two systems are different. 

Lax [11] pointed out that in hydrodynamics the system consisting of the equations of con- 
servation of mass, momentum, and energy on one hand, and the system of the equations of 
conservation of mass, momentum, and entropy on the other hand, are equivalent in case of 
smooth solutions, but are not equivalent in the discontinuous case. 

We consider in the shallow fluid flow a column at the position of the jump, as shown in 
Figure 12. 

(2) 

-[ 
O) 

~X 

Fi9.12, Cross-section view with cotumn at the position of the jump. 

For this column the conservation of momentum is expressed by 

hi (Vl_q)v l  - i 2 i 2 ha (v2 - -  q)v 2 +gghl  -~gha  = 0. (8.1) 

The first two terms on the left side or(El) represent the change in momentum of the column 
per unit time, whilst the force acting on the end sections of the column is represented by the 
last two terms. Equation (8.1) can also be derived by applying the generalized Rankine-Hugo- 
niot relation (7.1) to equation (5.3). 

On the contrary, application of (7.1) to equation (5.2) yields a relation which cannot be inter- 
preted as a conservation law. 

As it can also be established that the Rankine-Hugoniot relation of equation (5.1) expresses 
the conservation of mass across the jump, we may conclude that the conservation of mass 
and momentum is exactly satisfied by the jump relations of system (5.5). 

Remembering the theory of weak solutions (see Lax [11]), it can be said that the physically 
correct jump relations belong to the piecewise continuous weak solutions of (5.5). ' 

Therefore we prefer (5.5) for the calculation of a discontinuous solution in shallow fluid 
theory. 

In [12] the problem of calculating a bore from the shallow water equations has been solved 
by using the yon Neumann-Richtmyer method (see [4]) ; here however, use has been made of 
system (5.4), which is not acceptable from the physical point of view. 

The solutions of system (5.5) are, as can be seen in Table 1, not very satisfying, especially if 
the jump grows stronger. This can be explained by the argument that the shallow water equa- 
tions are not appropriate to this problem : they have been derived on the assumption that the 
pressure is given as in hydrostatics (see Stoker [1]). This assumption, however, is completely 
incorrect if a discontinuity is present in the flow. 

Nevertheless, as Table 1 shows, a weak bore is governed rather well by the shallow water 
equations. 
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